A Fourier Cosine Method for an Efficient Computation of Solutions to BSDEs
نویسندگان
چکیده
We develop a Fourier method to solve backward stochastic differential equations (BSDEs). General theta-discretization of the time-integrands leads to an induction scheme with conditional expectations. These are approximated by using Fourier-cosine series expansions, relying on the availability of a characteristic function. The method is applied to BSDEs with jumps. Numerical experiments demonstrate the applicability of BSDEs in financial and economic problems and show fast convergence of our efficient probabilistic numerical method.
منابع مشابه
Analytical Stress Solutions of an Orthotropic Sector Weakened by Multiple Defects by Dislocation Approach
In this article, the anti-plane deformation of an orthotropic sector with multiple defects is studied analytically. The solution of a Volterra-type screw dislocation problem in a sector is first obtained by means of a finite Fourier cosine transform. The closed form solution is then derived for displacement and stress fields over the sector domain. Next, the distributed dislocation method is em...
متن کاملModified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables
This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical function...
متن کاملAn Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملAn Energy-efficient Mathematical Model for the Resource-constrained Project Scheduling Problem: An Evolutionary Algorithm
In this paper, we propose an energy-efficient mathematical model for the resource-constrained project scheduling problem to optimize makespan and consumption of energy, simultaneously. In the proposed model, resources are speed-scaling machines. The problem is NP-hard in the strong sense. Therefore, a multi-objective fruit fly optimization algorithm (MOFOA) is developed. The MOFOA uses the VIKO...
متن کاملAn L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem
This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 37 شماره
صفحات -
تاریخ انتشار 2015